Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode.
نویسندگان
چکیده
Layered titanate H2Ti3O7 nanotubes were synthesized and firstly used as a supercapacitor electrode in a non-aqueous electrolyte. They exhibited the specific capacitances as high as 414 and 306 F g(-1) at 0.5 and 10 A g(-1), respectively, and 82% of the specific capacitance at the 10th cycle can be retained after 1000 cycles.
منابع مشابه
Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance
Articles you may be interested in Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors Effect of nano-filler on the performance of multiwalled carbon nanotubes based electrochemical double layer capacitors Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor app...
متن کاملHigh-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes
Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered mi...
متن کاملThe Synthesized Reduced Graphene Oxide Enhanced the Capacitive Behavior of Activated Carbon/PVA as Potential Electrode Materials
In this work, activated carbon (AC) derived from biomass wastes was implemented as electrode materials in supercapacitor application. This study has adopted rubber seed shell (RSS) wastes to derive AC via pyrolysis process. Meanwhile, reduced graphene oxide (rGO) was used as an additive material in order to study the effect of the rGO in capacitive behavior. The synthesized rGO was successfully...
متن کاملpH‐Regulated Synthesis of Multi‐Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates
Multi-shelled Mn2O3 hollow microspheres have been achieved through a pH-regulated method and used as supercapacitor electrodes. The designed unique architecture allows efficient use of pseudo-capacitive Mn2O3 nanomaterials for charge storage with facilitated transport for both ions and electrons, rendering them high specific capacitance, good rate capability, and remarkable cycling performance.
متن کاملCell voltage versus electrode potential range in aqueous supercapacitors
Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 45 شماره
صفحات -
تاریخ انتشار 2014